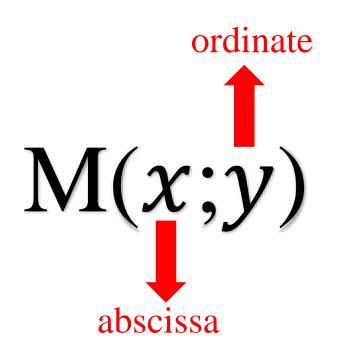


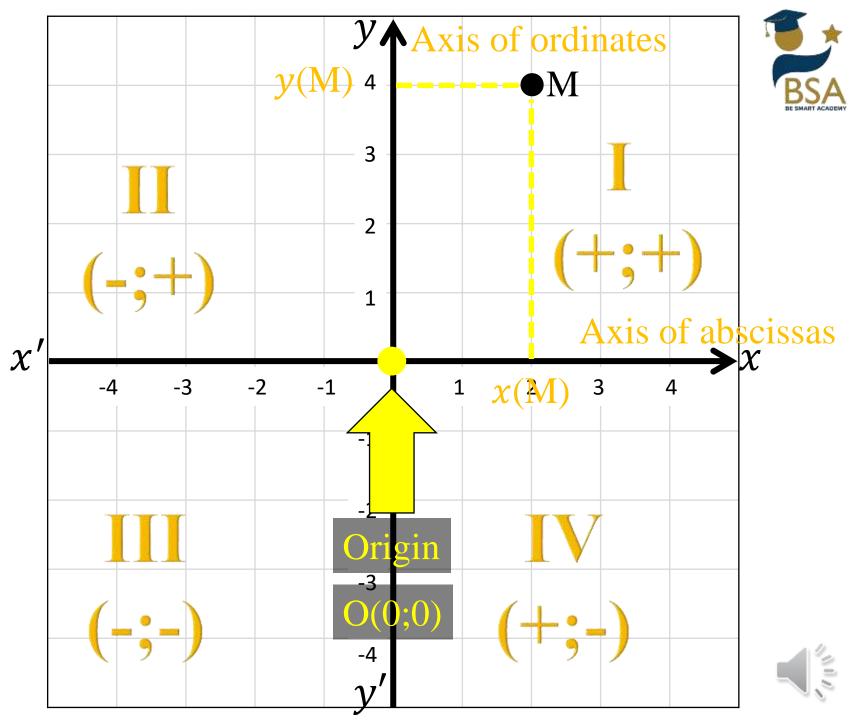
# OORDINATES SYSTEM Part 1



# Recall

*□*Coordinates system





# ☐ Length of a segment

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

#### Example:

$$A(-4;-2)$$
 and  $B(2;2)$ 

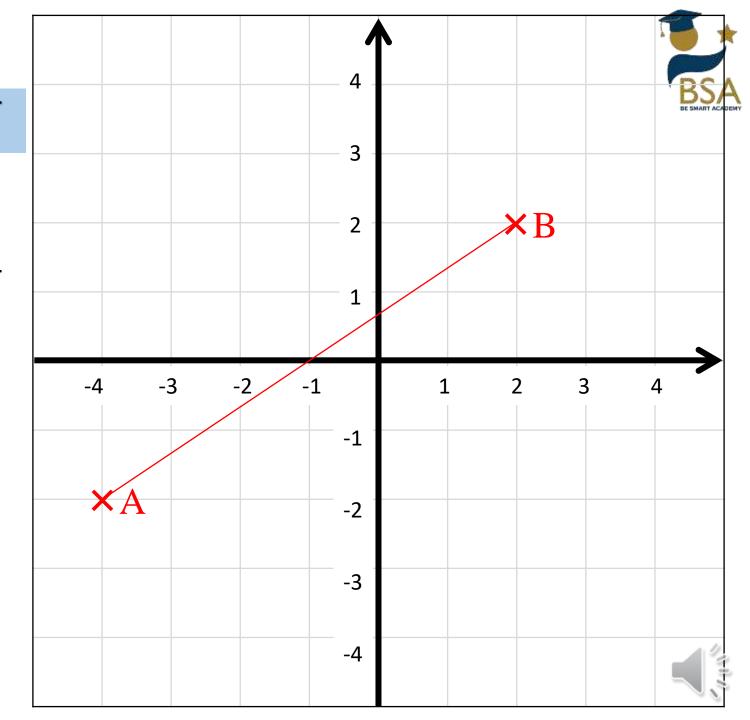
$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

$$= \sqrt{(2-(-4))^2 + (2-(-2))^2}$$

$$=\sqrt{36+16}$$

$$=\sqrt{52}$$

$$= 2\sqrt{13}$$



# Midpoint of a segment

I is the midpoint of [AB]:

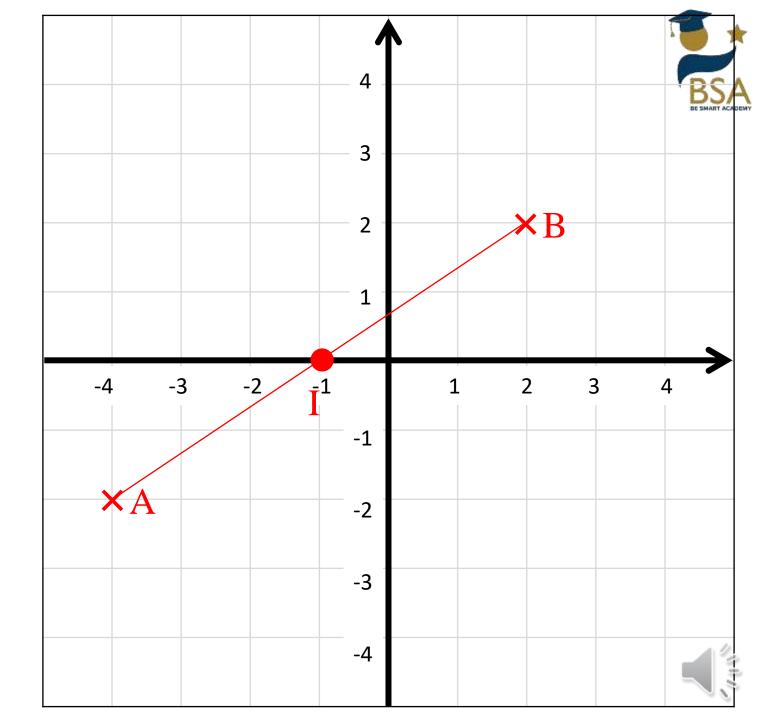
$$x_I = \frac{x_A + x_B}{2}$$
$$y_I = \frac{y_A + y_B}{2}$$

#### Example:

A(-4;-2) and B(2;2)  

$$x_I = \frac{x_A + x_B}{1} = \frac{-4 + 2}{1} = -\frac{2}{1} = -\frac{2}{1}$$

$$y_I = \frac{y_A + y_B}{2} = \frac{-2 + 2}{2} = \frac{0}{2} = 0$$





Consider the two points A(-2; 5) and B(6; -3).

- 1. Calculate the coordinates of:
  - a. M the midpoint of [AB].
  - b. N the symmetric of A with respect of B.
- a. M is the midpoint of [AB], so:

$$x_{M} = \frac{x_{A} + x_{B}}{2} = \frac{-2 + 6}{2} = \frac{4}{2} = 2$$

$$y_{M} = \frac{y_{A} + y_{B}}{2} = \frac{5 + (-3)}{2} = \frac{2}{2} = 1$$
So  $M(2; 1)$ 





Consider the two points A(-2; 5) and B(6; -3).

- 1. Calculate the coordinates of:
  - a. M the midpoint of [AB].
  - b. N the symmetric of A with respect of B
  - b. N is the symmetric of A with respect to B so:

B is the midpoint of [AN]

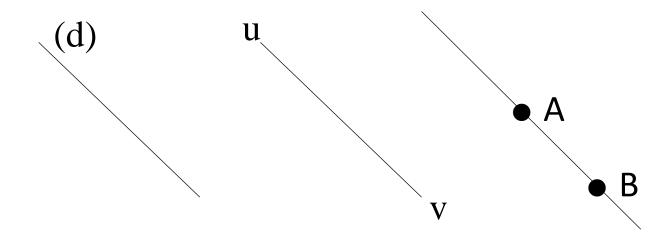
$$x_B = \frac{x_A + x_N}{2}$$
;  $y_B = \frac{y_A + y_N}{2}$   
 $6 = \frac{-2 + x_N}{2}$   $-3 = \frac{5 + y_N}{2}$   
 $x_N = 2 \times 6 + 2$   $y_N = -3 \times 6 - 5$   
 $= 14$   $= -23$   
Then N (14;-23)



## ☐ Line (Recall)

BSA BE SMART ACADEMY

- > A line is a set of points.
- > A line is determined by two points.
- To name a line, we can use:
  - One small letters: (d)
  - Two small letters: (uv)
  - Two points of the line: (AB)



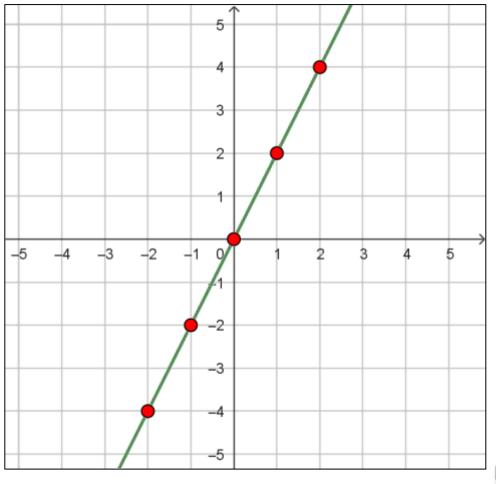


In the system of coordinates, the line is a relation between the coordinates x and y. This relation is in the form of y = ax + b

### Example 1:

$$y = 2x$$

| x | -2 | -1 | 0 | 1 | 2 |
|---|----|----|---|---|---|
| у | -4 | -2 | 0 | 2 | 4 |





In the system of coordinates, the line is a relation between the coordinates x and y. This relation is in the form of y = ax + b

#### Example 2:

$$y = x + 1$$

| x | -2 | -1 | 0 | 1 | 2 |
|---|----|----|---|---|---|
| у | -1 | 0  | 1 | 2 | 3 |



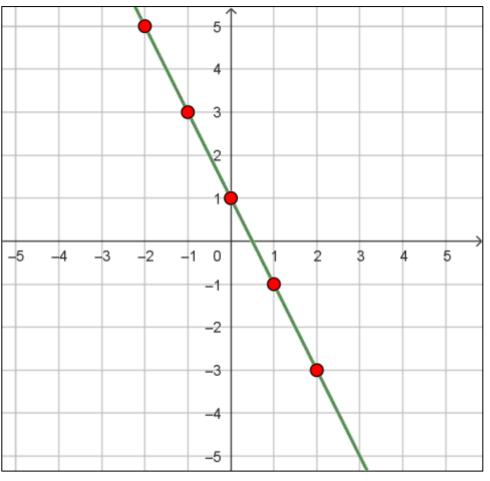


In the system of coordinates, the line is a relation between the coordinates x and y. This relation is in the form of y = ax + b

### Example 3:

$$y = -2x + 1$$

| x | -2 | -1 | 0 | 1  | 2  |
|---|----|----|---|----|----|
| y | 5  | 3  | 1 | -1 | -3 |







b y-intercept =ax





#### Horizontal a = 0

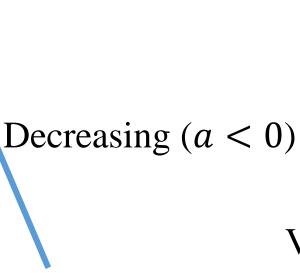
 $\nu = ax$ 

> Determine the direction of a line.





Vertical (a ∄)



Increasing (a > 0)

# y = ax

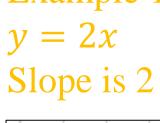
The slope is the change in y coordinate with respect to the change in x coordinate of the line.

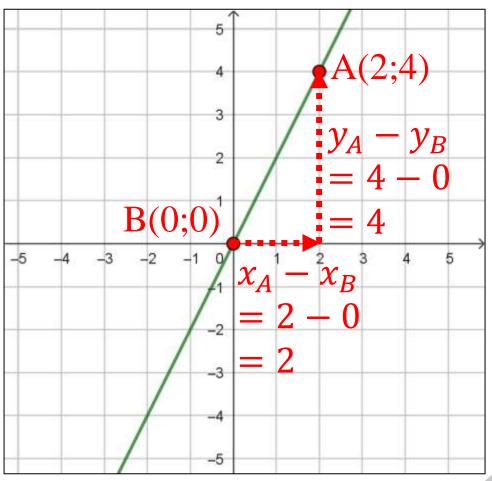
#### Slope:

$$a = \frac{y_A - y_B}{x_A - x_B} = \frac{4}{2} = 2$$









# y = ax

The slope is the change in y coordinate with respect to the change in x coordinate of the line.

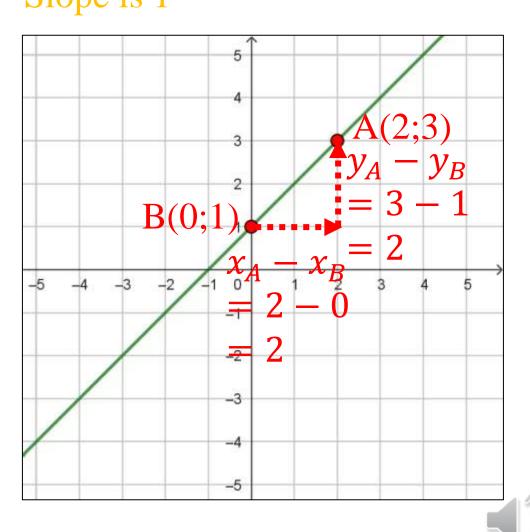
## Slope:

$$a = \frac{y_A - y_B}{x_A - x_B} = \frac{2}{2} = 1$$



$$y = x + 1$$
  
Slope is 1





# y = ax

The slope is the change in y coordinate with respect to the change in x coordinate of the line.

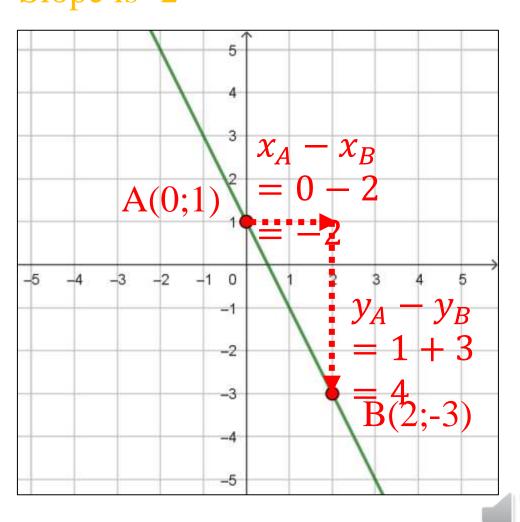
## Slope:

$$a = \frac{y_A - y_B}{x_A - x_B} = \frac{4}{-2} = -2$$



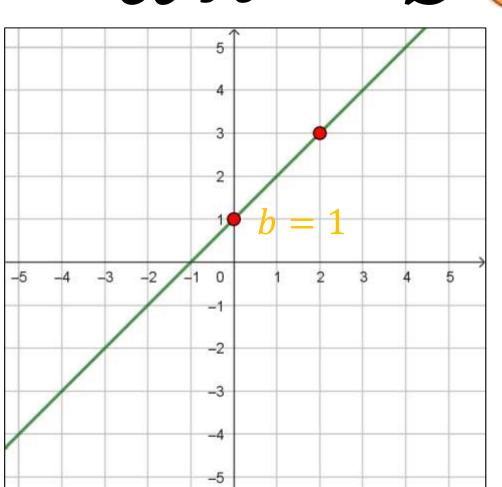
$$y = -2x + 1$$
Slope is -2







y = ax



D y-intercept

Intersection with y axis





Determine the slope and the y-intercept in each case.

$$1 y = \frac{1}{2}x - 3$$

Form of 
$$y = ax + b$$

So:

Slope 
$$a = \frac{1}{2}$$

y-intercept: 
$$b = -3$$





Determine the slope and the y-intercept in each case.

$$2 y = -3x + 5$$

Form of 
$$y = ax + b$$

So:

Slope 
$$a = -3$$

y-intercept: 
$$b = 5$$



Determine the slope and the y-intercept in each case.

$$y = 3$$

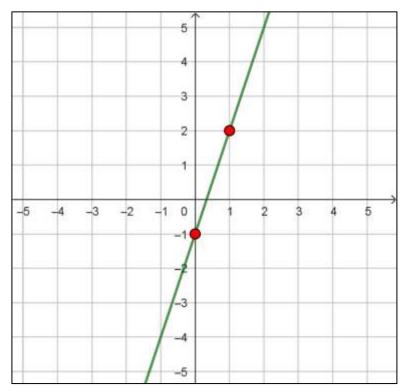
Form of y = ax + bSo: Slope a = 0y-intercept: b = 3





### Determine the slope and the y-intercept in each case.





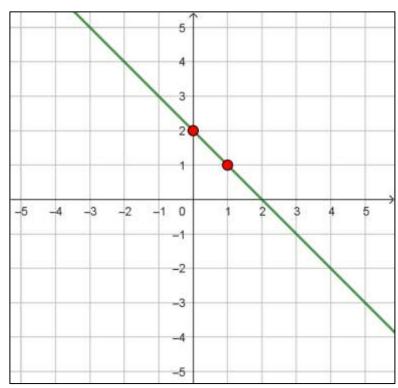
Suppose that 
$$A(0; -1)$$
 and  $B(1; 2)$   
Slope:  $a = \frac{y_A - y_B}{x_A - x_B} = \frac{-1 - 2}{0 - 1} = -\frac{3}{-1} = 3$   
y-intercept:  $b = -1$ 





### Determine the slope and the y-intercept in each case.





Suppose that 
$$A(0; 2)$$
 and  $B(1; 1)$   
Slope: $a = \frac{y_A - y_B}{x_A - x_B} = \frac{2 - 1}{0 - 1} = \frac{1}{-1} = -1$   
y-intercept:  $b = 2$ 





## How to determine if a point belongs to a line?

Consider the line (d): y = ax + b and the point  $A(x_A; y_A)$ .

We say,

A belongs to (d)

or

A is on (d)

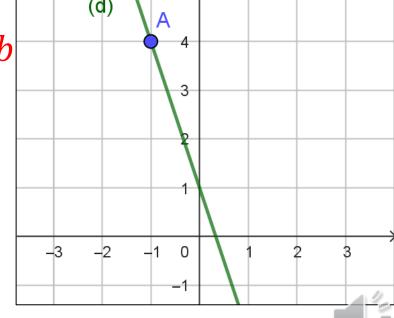
or

(d) Passes through A

The coordinates of A verify the equation of (d)



$$y_A = ax_A + b$$



#### Example:

(d): 
$$y = -3x + 1$$
 ; A(-1; 4)  
 $-3x_A + 1 = -3(-1) + 1 = 3 + 1 = 4 = y_A$   
So A belongs to (d)



Consider the line (d) of equation y = -2x + 1 and the two points A(3;-5) and B(2;3).

- 1 Show that (d) passes through A and not through B.
- 2 Calculate the slope of the line (AB).

$$1 -2x_A + 1 = -2(3) + 1 = -6 + 1 = -5 = y_A$$

So (d) passes through A.

$$-2x_B + 1 = -2(2) + 1 = -4 + 1 = -3 \neq y_A$$

So (d) doesn't pass through B.





Consider the line (d) of equation y = -2x + 1 and the two points A(3;-5) and B(2;3).

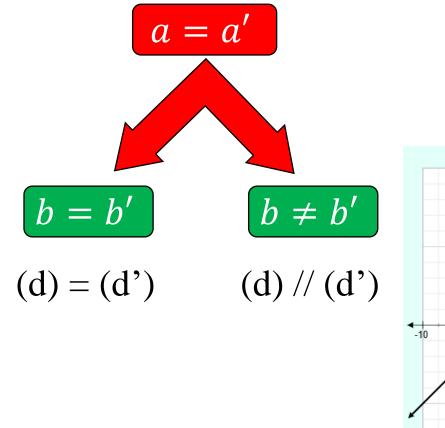
- 1 Show that (d) passes through A and not through B.
- 2 Calculate the slope of the line (AB).





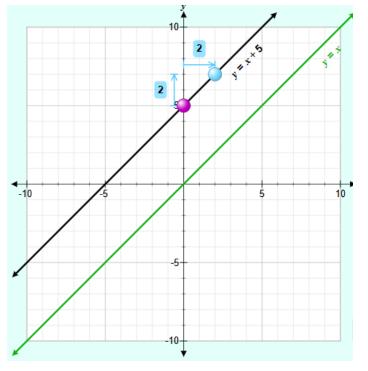
How to determine if two lines are parallel or perpendicular?

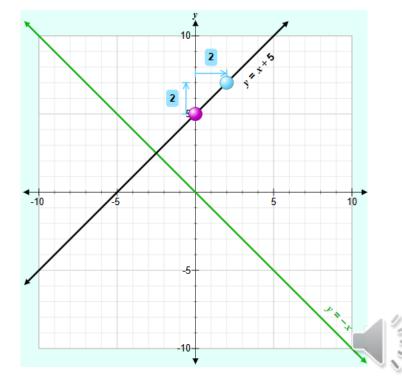
Consider the two lines (d): y = ax + b and the line (d'): y = a'x + b'.





$$(d) \perp (d')$$

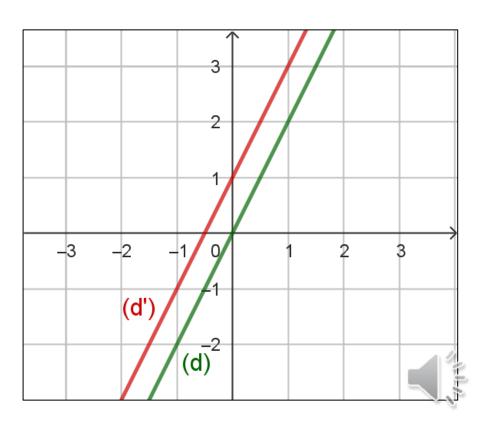






Study the relative position of the two lines in each case:

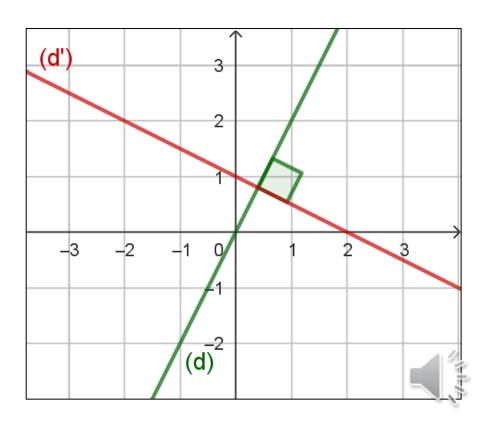
- 1 (d): y = 2x and (d'): y = 2x + 1
- 2 (d): y = 2x and (d'):  $y = -\frac{1}{2}x + 1$
- 3 (d): y = 2x 3 and (d'):  $\frac{1}{2}y x = -3$
- 4 (d): y = -x + 3 and (d'): y = 2x + 1
  - 1 a = 2 ; b = 0 a' = 2 ; b' = 1 $a = a' \& b \neq b'$  so (d)//(d')





Study the relative position of the two lines in each case:

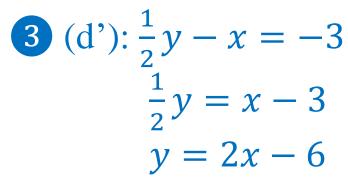
- 1 (d): y = 2x and (d'): y = 2x + 1
- 2 (d): y = 2x and (d'):  $y = -\frac{1}{2}x + 1$
- 3 (d): y = 2x 3 and (d'):  $\frac{1}{2}y x = -3$
- 4 (d): y = -x + 3 and (d'): y = 2x + 1
  - 2  $a \times a' = 2 \times \frac{-1}{2} = -1$ so (d) and (d') are perpendicular.





Study the relative position of the two lines in each case:

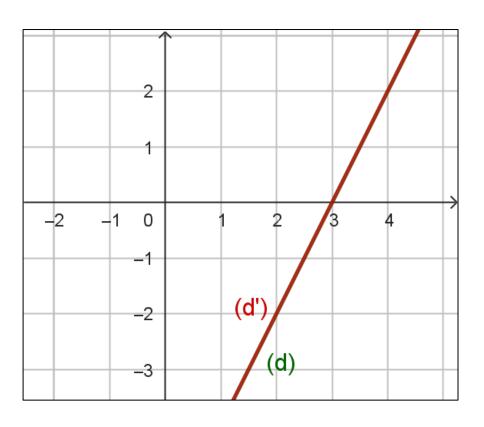
- 1 (d): y = 2x and (d'): y = 2x + 1
- 2 (d): y = 2x and (d'):  $y = -\frac{1}{2}x + 1$
- 3 (d): y = 2x 6 and (d'):  $\frac{1}{2}y x = -3$
- 4 (d): y = -x + 3 and (d'): y = 2x + 1



$$a = 2$$
 ;  $b = -6$ 

$$a' = 2 : b' = -6$$

a = a' & b = b' so (d) and (d') are confounded lines.







Study the relative position of the two lines in each case:

1 (d): 
$$y = 2x$$
 and (d'):  $y = 2x + 1$ 

2 (d): 
$$y = 2x$$
 and (d'):  $y = -\frac{1}{2}x + 1$ 

3 (d): 
$$y = 2x - 6$$
 and (d'):  $\frac{1}{2}y - x = -3$ 

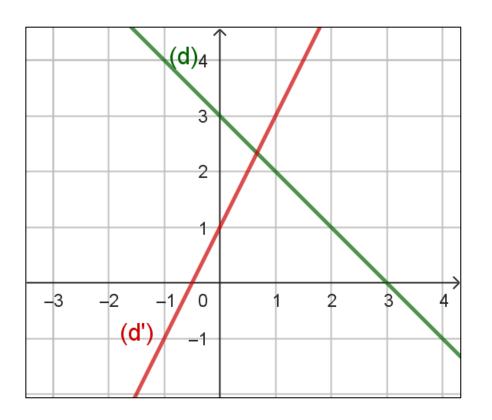
4 (d): 
$$y = -x + 3$$
 and (d'):  $y = 2x + 1$ 

$$4 \ a = -1 \ ; \ a' = 2$$

$$a \times a' = -1 \times 2 = -2$$

So (d) and (d') are not perpendicular.

$$a \neq a'$$
 so (d) and (d') are not parallel.

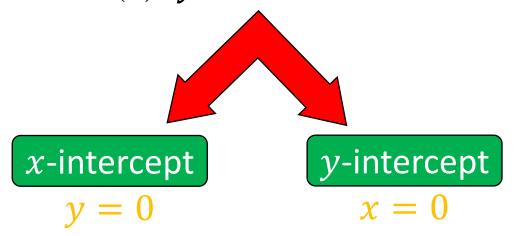


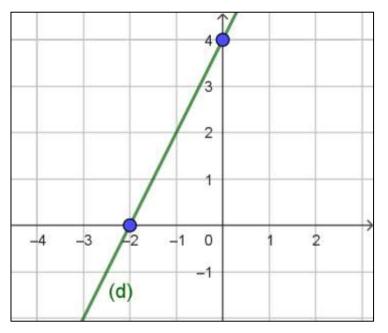




How to determine the x-intercept and the y-intercept if the equation is given?

Consider the two lines (d): y = ax + b.





Example: (d): y = 2x + 4

x –intercept: for 
$$y = 0$$
;  $0 = 2x + 4$ ;  $2x = -4$ ;  $x = -\frac{4}{2} = -2$ 

y –intercept: for 
$$x = 0$$
;  $y = 2(0) + 4 = 4$  so (0;4)





Consider the line (d):  $y = \frac{1}{2}x + 1$  and the point A(2;-2).

- 1 Show that (d) doesn't pass through A.
- 2 (d) intersect (x'x) at E and (y'y) at F. Find the coordinates of E and F.
- 3 Calculate the slope of the line (EA).
- 4 Does (EA) perpendicular to (d)? Justify.

$$1 \frac{1}{2}x_A + 1 = \frac{1}{2}(2) + 1 = 1 + 1 = 2 \neq y_A$$

So (d) doesn't pass through A.





Consider the line (d):  $y = \frac{1}{2}x + 1$  and the point A(2;-2).

- 1 Show that (d) doesn't pass through A.
- 2 (d) intersect (x'x) at E and (y'y) at F. Find the coordinates of E and F.
- 3 Calculate the slope of the line (EA).
- 4 Does (EA) perpendicular to (d)? Justify.

## 2

For 
$$y = 0$$
;  $0 = \frac{1}{2}x + 1$   

$$\frac{1}{2}x = -1$$

$$x = -2 \text{ so } E(-2;0)$$
For  $x = 0$ ;  $y = \frac{1}{2}(0) + 1 = 1 \text{ so } F(0;1)$ 





Consider the line (d):  $y = \frac{1}{2}x + 1$  and the point A(2;-2).

- 1 Show that (d) doesn't pass through A.
- 2 (d) intersect (x'x) at E and (y'y) at F. Find the coordinates of E and F.
- 3 Calculate the slope of the line (EA).
- 4 Does (EA) perpendicular to (d)? Justify.

3

$$a_{(EA)} = \frac{y_E - y_A}{x_E - x_A} = \frac{0 - (-2)}{-2 - 2} = \frac{2}{-4} = -\frac{1}{2}$$





- Consider the line (d):  $y = \frac{1}{2}x + 1$  and the point A(2;-2).
- 1 Show that (d) doesn't pass through A.
- 2 (d) intersect (x'x) at E and (y'y) at F. Find the coordinates of E and F.
- 3 Calculate the slope of the line (EA).
- 4 Does (EA) perpendicular to (d)? Justify.

$$a_{(EA)} = -\frac{1}{2}$$
 $a_{(d)} \times a_{(EA)} = \frac{1}{2} \times \frac{-1}{2} = -\frac{1}{4} \neq -1$ 





How to determine the intersection point of two lines?

Suppose that the intersection point is called I.

(d): 
$$y = ax + b$$
 (d'):  $y = a'x + b'$ 

I belongs to (d)  $y_I = ax_I + b$  and

I belongs to (d')  $y_I = a'x_I + b'$ 

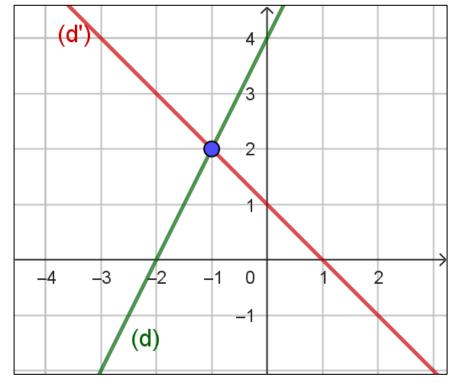
Example: (d): y = 2x + 4; (d'): y = -x + 1

I belongs to (d):  $y_I = 2x_I + 4$ 

I belongs to (d'):  $y_I = -x_I + 1$ 

$$y_I = y_I$$
  
 $2x_I + 4 = -x_I + 1$   
 $2x_I + x_I = 1 - 4$ 

 $y_I = y_I$ 



$$3x_I = -3$$

$$x_I = -\frac{3}{3} = -1$$

$$y_I = -x_I + 1 = -(-1) + 1 = 2$$